2025年成考高起点每日一练《数学(文史)》4月3日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、已知f(x)=ax2+b的图像经过点(1,2)且其反函数f-1(x)图像经过点(3,0),则函数f(x)的解析式是()。
- A:
- B:f(x)=-x2+3
- C:f(x)=3x2+2
- D:f(x)=x2+3
答 案:B
解 析:∵f(x)的反函数f-1(x)过点(3,0),所以f(x)又过点(3,0),所以有f(1)=2,
2、下列函数中,既是偶函数,又在区间(0,3)为减函数的是()。
- A:y=cosx
- B:y=log2x
- C:
- D:y=x2-4
答 案:A
3、设集合M={a,b,c,d},N=(a,b,c),则集合M∪N=()。
- A:{a,b,c}
- B:{d}
- C:{a,b,C,d}
- D:空集
答 案:C
4、函数y=-x2+2x的值域是()。
- A:[0,+∞)
- B:[1,+∞)
- C:(-∞,1]
- D:(-∞,0)
答 案:C
解 析:本题主要考查的知识点为函数的值域. y=-x2+2x=1-(x-1)2≤1,故原函数的值域为(-∞,1]
主观题
1、已知x+x-1=,求x2+x-2的值。
答 案:由已知,得
2、设3a=5b=15,求a-1+b-1的值。
答 案:由3a=15,得a=log315;又由5b=15,得b=log515。 因此a-1+b-1= =log153+log155=1。
解 析:过程中应用了换底公式的推论,即
3、已知函数f(x)=2x3-3x2,求
(1)函数的单调区间;
(2)函数f(x)在区间[-3,2]的最大值与最小值。
答 案:
4、等差数列{an}的通项公式为an=3n-1,在{an}中,每相邻的两项之间插人三项,构成新的等差数列{bn}. (Ⅰ)求{bn}的通项公式; (Ⅱ)求{bn}前10项的和.
答 案: 考点本题主要考查等差数列的通项公式和前n项和公式的运用,是成人高考常见题型.
填空题
1、平面内有10个点,任何三点都不在同一直线上,问能连成______条不同的直线。
答 案:45
2、函数y=2cosx-cos2x(x∈R)的最大值为______。
答 案:
解 析:
精彩评论