爱米职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2025年04月11日成考高起点每日一练《数学(文史)》

2025年04月11日成考高起点每日一练《数学(文史)》

2025/04/11 作者:匿名 来源:本站整理

2025年成考高起点每日一练《数学(文史)》4月11日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、掷两颗骰子点数之和等于4的概率是()。

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:掷一对骰子的等可能结果共有n=36种,点数之和等于4的结果有1+3=4,3+1=4,2+2=4,故有m=3种,所以其概率为故选B。  

2、已知sinα=,则sin(α+)的值等于()。

  • A:
  • B:
  • C:
  • D:

答 案:C

3、下列函数为奇函数的是 ( )。

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:本题主要考查的知识点为函数的奇偶性.  【应试指导】f(z)=sinx=-sin(-x)=-f(-x),所以y=sinx为奇函数.        

4、设α是三角形的一个内角,若,则sinα=()

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:由题知0<α<兀,而,故,因此.

主观题

1、求证:双曲线的一个焦点到一条渐近线的距离等于虚半轴的长.  

答 案:设双曲线的方程为 则它的焦点坐标为F1(-c,0),F2(c,0),其中c2=a2+b2,渐近线方程为 令设焦点F2(c,0)到渐近线 的距离为d,则 即从双曲线的一个焦点F2(c,0)到一条渐近线的距离等于虚半 轴的长b,由上述推导过程可知,点F2到渐近线以及点F1(-c,0)到渐近线 的距离都等。 由于证明中只涉及a,b,c,而与双曲线的位置无关,所以这个结论对于任意双曲线都成立.

解 析:本题考查的是圆锥曲线与直线位置关系的推理能力,主要是用代数的方法表示几何中的问题.考生必须对曲线方程、几何性质及元素之间的关系有深刻的理解,方可解决此类综合题.这种综合性的圆锥曲线试题出现的概率比较高,要引起重视.

2、已知F是椭圆的右焦点,点M在抛物线y2=2px(p>0)上O为坐标原点,且△MOF为正三角形.  (Ⅰ)求P的值; (Ⅱ)求抛物线的焦点坐标和准线方程.

答 案:(Ⅰ)由椭圆方程可知,椭圆的长半轴a=5,短半轴,则椭圆的半焦距 即椭圆的右焦点F的坐标为 (4.0). 如图,因为△MOF为正三角形,OF=4,过M作MN⊥OF于N点, 【考点指要】本题主要考查椭圆、抛物线的概念,要求考生掌握它们的标准方程和性质,会用它们解决有关的问题.  

3、计算  

答 案:

4、设(0<α<π),求tanα的值。  

答 案:

填空题

1、从某班的一次数学测试卷中任意抽出10份,其得分情况如下:81,98,43,75,60,55,78,84,90,70,则这次测验成绩的样本方差是()  

答 案:252.84

解 析: =252.84  

2、已知关于t的二次方程t2-6tsinθ+tanθ=0(0<θ<)的两根相等,则sinθ+cosθ的值等于______。  

答 案:

解 析:

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论

相关文章