爱米职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2025年04月17日成考高起点每日一练《数学(文史)》

2025年04月17日成考高起点每日一练《数学(文史)》

2025/04/17 作者:匿名 来源:本站整理

2025年成考高起点每日一练《数学(文史)》4月17日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、已知数列前n项和则第5项的值是()

  • A:7
  • B:10
  • C:13
  • D:16

答 案:C

解 析:=3n-2.当n=5时,=3×5-2=13

2、已知点M(-2,5),N(4,2),点P在上,且=1:2,则点P的坐标为()

  • A:
  • B:(0,4)
  • C:(8,2)
  • D:(2,1)

答 案:B

解 析:由题意得:  

3、已知点M(1,2),N(2,3),则直线MN的斜率为()。

  • A:
  • B:1
  • C:-1
  • D:

答 案:B

解 析:本题主要考查的知识点为直线的斜率。 直线MN的斜率为

4、若|a|=4,|b|=,且a•b=则=()。

  • A:120°
  • B:150°
  • C:60°
  • D:30°

答 案:B

主观题

1、(1)已知tanα= 求cot2α的值; (2)已知tan2α=1,求tanα的值。

答 案:(1) (2)由已知,得 解关于tanα的一元二次方程,得tanα=

2、已知抛物线C:y2=2px(p>0)的焦点到准线的距离为1。(I)求C的方程;
(Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB。

答 案:(I)由题意,该抛物线的焦点到准线的距离为 所以抛物线C的方程为y2=2x. (Ⅱ)因A(l,m)(m>0)为C上一点,故有m2=2, 可得 m=因此A点坐标为 设B点坐标为

3、求证:双曲线的一个焦点到一条渐近线的距离等于虚半轴的长.  

答 案:设双曲线的方程为 则它的焦点坐标为F1(-c,0),F2(c,0),其中c2=a2+b2,渐近线方程为 令设焦点F2(c,0)到渐近线 的距离为d,则 即从双曲线的一个焦点F2(c,0)到一条渐近线的距离等于虚半 轴的长b,由上述推导过程可知,点F2到渐近线以及点F1(-c,0)到渐近线 的距离都等。 由于证明中只涉及a,b,c,而与双曲线的位置无关,所以这个结论对于任意双曲线都成立.

解 析:本题考查的是圆锥曲线与直线位置关系的推理能力,主要是用代数的方法表示几何中的问题.考生必须对曲线方程、几何性质及元素之间的关系有深刻的理解,方可解决此类综合题.这种综合性的圆锥曲线试题出现的概率比较高,要引起重视.

4、已知lg2=a,lg3=b,求lg0.15关于a,b的表达式。  

答 案:

填空题

1、已知tanθ=1/2,则sin2θ+sin2θ=__________.

答 案:1

解 析:

2、设

答 案:-1

解 析:  

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论

相关文章