2025年成考高起点每日一练《数学(文史)》4月21日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、cos12°cos98°-sin12°sin98°=()。
- A:cos20°
- B:sin20°
- C:-cos20°
- D:-sin20°
答 案:D
解 析:原式=cos110°=cos(180°-70°)=-cos70°=-cos(90°-20°)=-sin20°。
2、y=(2x2+3)(3x-2)的导数是( )
- A:18x2-8x+9
- B:6x2+9
- C:12x2-8x
- D:12x
答 案:A
解 析:y=(2x2+3)(3x-2)=6x3-4x2+9x-6,y´=18x2-8x+9.【考点指要】会用两个函数和、差的求导法则求多项式函数的导数,是近几年成人高考的常见题.
3、下列函数中,为减函数的是()
- A:y=cosx
- B:
- C:
- D:
答 案:C
解 析:由对数函数的性质可知,当底数大于0小于1时,在定义域内,对数函数为减函数,故选C选项.
4、已知向量i,j为互相垂直的单位向量,向量a=2i+mj,若|a|=2,则m=()
- A:-2
- B:-1
- C:0
- D:1
答 案:C
解 析:由题可知a=(2,m),因此,故m=0.
主观题
1、设函数
(1)求
;(2)求函数f(θ)最小值。
答 案:
2、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面积.
答 案:因为A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面积
3、在△ABC中,已知AB=2,BC=1,CA=
点D,E,F分别在AB,BC,CA边上,△DEF为正三角形,记∠FEC为α,如果sinα=
求△DEF的边长。
答 案:解析:由AB=2,BC=1,CA= 得BC2=CA2=AB2,因此∠C=90°,如图所示。
因为sinA=
所以∠A=30°,于是∠b=60°。
设正△DEF边长为l,已知AB=2,sinα=
由此EC=lcosα
有图知,∠1+∠2+∠3=180°(三角形内角和);
∠3+∠4+α=180°,因为∠2-∠4=60°,所以∠1=α。
【考点指要】本题主要考查三角函数的概念、同角三角函数的关系及正弦定理,这些均是考试大纲要求掌握的重要概念,并要求能达到灵活应用的程度,此类题是在成人高考中出现频率较高的题型,
4、已知F是椭圆的右焦点,点M在抛物线y2=2px(p>0)上O为坐标原点,且△MOF为正三角形.
(Ⅰ)求P的值; (Ⅱ)求抛物线的焦点坐标和准线方程.
答 案:(Ⅰ)由椭圆方程可知,椭圆的长半轴a=5,短半轴,则椭圆的半焦距 即椭圆的右焦点F的坐标为
(4.0).
如图,因为△MOF为正三角形,OF=4,过M作MN⊥OF于N点,
【考点指要】本题主要考查椭圆、抛物线的概念,要求考生掌握它们的标准方程和性质,会用它们解决有关的问题.
填空题
1、已知α+β=π/4,则(1+tanα)(1+tanβ)=______。
答 案:2
2、为了考察某种小麦的长势,从中抽取10株苗,测得苗高如下(单位:cm):12,13,14,15,10,16,13,11,15,11. 则该品种的小麦苗高的样本方差为__________cm2.
答 案:3.6
解 析:由题中条件可得 【考点指要】本题主要考查样本的平均值和方差的计算,考生只需熟记样本平均数和方差的公式即可.
精彩评论