爱米职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2025年04月23日成考高起点每日一练《数学(理)》

2025年04月23日成考高起点每日一练《数学(理)》

2025/04/23 作者:匿名 来源:本站整理

2025年成考高起点每日一练《数学(理)》4月23日专为备考2025年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、过点P(2,3)且在两轴上截距相等的直线方程为()  

  • A:
  • B:
  • C:x+y=5
  • D:

答 案:B

解 析:选项A中,在x、y 轴上截距为 5.但答案不完整 所以选项B中有两个方程,在x轴上横截距与y轴上的纵截距都为0,也是相等的 选项C,虽然过点(2,3),实质上与选项A相同.选项 D,转化为:答案不完整  

2、设F1和F2为双曲线的两焦点,点P在双曲线上,则||PF2|-|PF2||=()。

  • A:4
  • B:2
  • C:1
  • D:

答 案:A

解 析:由题意有a2=4.a=2,由双曲线的定义,可知||PF2|-|PF2||=2a=4.(答案为A)

3、在△ABC中,若lgsinA-lgsinB-lgcos=lg2,则△ABC是()

  • A:以A为直角的三角形
  • B:b=c的等腰三角形
  • C:等边三角形
  • D:钝角三角形

答 案:B

解 析:判断三角形的形状,条件是用一个对数等式给出先将对数式利用对数的运算法则整理。 ∵lgsinA-lgsinB-lgcos=lg2,由对数运算法则可得,左 两个对数底数相等则真数相等:即2sinBcosC=sinA 在△ABC中,∵A+B+C=180°,∴A=180°-(B+C), 故为等腰三角形

4、命题甲:实数a,b,c成等比数列;命题乙:b2=ac,则甲是乙()。  

  • A:充分条件但不是必要条件
  • B:必要条件但不是充分条件
  • C:充分必要条件
  • D:不是充分条件也不是必要条件

答 案:A

主观题

1、计算。  

答 案:

2、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式 (Ⅱ)求证: (Ⅲ)求证:  

答 案:(Ⅰ)由题意知(如图所示) (Ⅱ) (Ⅲ) 由已知,a,c是正四棱柱的棱,a,b,c两两垂直  

3、已知数列{an}中,a1=2, (Ⅰ)求数列{an}的通项公式; (Ⅱ)求数列{an}前5项的和 S5

答 案:解:

4、已知空间四边形OABC,OB=OC且∠AOB=∠AOC=θ(如图)。求证:OA⊥BC。

答 案:

填空题

1、九个学生期末考试的成绩分别为79 63 88 94 99 77 89 81 85这九个学生成绩的中位数为______。  

答 案:85  

解 析:本题主要考查的知识点为中位数. 将成绩按由小到大排列:63,77,79,81,85,88,89,94,99.因此中位数为85。

2、已知,则=______。  

答 案:

解 析:

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论

相关文章