2025年成考高起点每日一练《数学(文史)》5月26日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、设甲:;乙:
.则()
- A:甲是乙的必要条件但不是充分条件
- B:甲是乙的充分条件但不是必要条件
- C:甲是乙的充要条件
- D:甲既不是乙的充分条件也不是乙的必要条件
答 案:A
解 析:三角形相似不一定全等,但三角形全等一定相似,因此,甲是乙的必要条件但不是充分条件.
2、函数y=cos2x的最小正周期是()。
- A:6π
- B:4π
- C:2π
- D:π
答 案:D
3、点P(2,5)到直线x+y-9=0的距离是()
- A:
- B:2
- C:
- D:
答 案:C
解 析:根据点到直线的距离公式得,P(2,5)到直线x+y-9=0的距离为
4、函数f(x)=(x2-2)3+4的极小值为()。
- A:f(
)
- B:f(-
)
- C:f(0)
- D:f(4)
答 案:C
主观题
1、弹簧的身长与下面所挂砝码的重量成正比,知弹簧挂20g重的砝码时长度是12cm,挂35g重的砝码时长度是15cm,写出弹簧长度y(cm)与砝码重x(g)的函数关系式,并求弹簧不挂砝码时的长度
答 案:设弹簧原长为y0cm,则弹簧伸长量为(y-y0)cm。 由题意得 y-y0 =kx,即 y= kx+y0,
所求函数关系式为y=0.2x+8,弹簧的原长为8CM
2、设椭圆的中心是坐标原点,长轴在x轴上,离心率已知点P
到圆上的点的最远距离是
求椭圆的方程
答 案:由题意,设椭圆方程为 由
设P
点到椭圆上任一点的距离为 d,
则在y=-b时,
最大,即d也最大。
3、已知x+x-1=,求x2+x-2的值。
答 案:由已知,得
4、求下列函数的最大值、最小值和最小正周期: (1)
2)y=6cosx+8sinx
答 案: 所以函数的最大值是
最小值是
最小正周期为2π,
(2)要将6cosx+8sinx化为sinαcosx+cosαsinx这种形式,需使cosx与sinx的系数平方和为1,为此,将已知函数化为
因此,函数的最大值是10,最小值是-10,最小正周期为2π
填空题
1、函数f(x)=在区间[-3,3]上的最大值为()
答 案:4
解 析:这题考的是高次函数的最值问题,可用导数来求函数在区间[-3,3]上的最值。 列出表格
由上表可知函数在[-3,3]上,在x=1点处有最大值为4.
2、函数y=的定义域是()
答 案:[1,+∞)
解 析:要是函数y=有意义,需使
所以函数的定义域为{x|x≥1}=[1,+∞)
精彩评论